Papers
Topics
Authors
Recent
Search
2000 character limit reached

PFH spectral invariants on the two-sphere and the large scale geometry of Hofer's metric

Published 8 Feb 2021 in math.SG and math.DS | (2102.04404v3)

Abstract: We resolve three longstanding questions related to the large scale geometry of the group of Hamiltonian diffeomorphisms of the two-sphere, equipped with Hofer's metric. Namely: (1) we resolve the Kapovich-Polterovich question by showing that this group is not quasi-isometric to the real line; (2) more generally, we show that the kernel of Calabi over any proper open subset is unbounded; and (3) we show that the group of area and orientation preserving homeomorphisms of the two-sphere is not a simple group. We also obtain, as a corollary, that the group of area-preserving diffeomorphisms of the open disc, equipped with an area-form of finite area, is not perfect. Central to all of our proofs are new sequences of spectral invariants over the two-sphere, defined via periodic Floer homology.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.