Papers
Topics
Authors
Recent
2000 character limit reached

On the Convexity of Level-sets of Probability Functions (2102.04052v1)

Published 8 Feb 2021 in math.OC

Abstract: In decision-making problems under uncertainty, probabilistic constraints are a valuable tool to express safety of decisions. They result from taking the probability measure of a given set of random inequalities depending on the decision vector. Even if the original set of inequalities is convex, this favourable property is not immediately transferred to the probabilistically constrained feasible set and may in particular depend on the chosen safety level. In this paper, we provide results guaranteeing the convexity of feasible sets to probabilistic constraints when the safety level is greater than a computable threshold. Our results extend all the existing ones and also cover the case where decision vectors belong to Banach spaces. The key idea in our approach is to reveal the level of underlying convexity in the nominal problem data (e.g., concavity of the probability function) by auxiliary transforming functions. We provide several examples illustrating our theoretical developments.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.