Papers
Topics
Authors
Recent
2000 character limit reached

Identifying the Origin of Finger Vein Samples Using Texture Descriptors

Published 8 Feb 2021 in cs.CV | (2102.03992v1)

Abstract: Identifying the origin of a sample image in biometric systems can be beneficial for data authentication in case of attacks against the system and for initiating sensor-specific processing pipelines in sensor-heterogeneous environments. Motivated by shortcomings of the photo response non-uniformity (PRNU) based method in the biometric context, we use a texture classification approach to detect the origin of finger vein sample images. Based on eight publicly available finger vein datasets and applying eight classical yet simple texture descriptors and SVM classification, we demonstrate excellent sensor model identification results for raw finger vein samples as well as for the more challenging region of interest data. The observed results establish texture descriptors as effective competitors to PRNU in finger vein sensor model identification.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.