Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applications of Machine Learning in Document Digitisation (2102.03239v1)

Published 5 Feb 2021 in cs.CV, econ.EM, and stat.ML

Abstract: Data acquisition forms the primary step in all empirical research. The availability of data directly impacts the quality and extent of conclusions and insights. In particular, larger and more detailed datasets provide convincing answers even to complex research questions. The main problem is that 'large and detailed' usually implies 'costly and difficult', especially when the data medium is paper and books. Human operators and manual transcription have been the traditional approach for collecting historical data. We instead advocate the use of modern machine learning techniques to automate the digitisation process. We give an overview of the potential for applying machine digitisation for data collection through two illustrative applications. The first demonstrates that unsupervised layout classification applied to raw scans of nurse journals can be used to construct a treatment indicator. Moreover, it allows an assessment of assignment compliance. The second application uses attention-based neural networks for handwritten text recognition in order to transcribe age and birth and death dates from a large collection of Danish death certificates. We describe each step in the digitisation pipeline and provide implementation insights.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
Citations (9)