Papers
Topics
Authors
Recent
2000 character limit reached

On uniformly convex functions

Published 5 Feb 2021 in math.FA | (2102.03086v3)

Abstract: Non-convex functions that yet satisfy a condition of uniform convexity for non-close points can arise in discrete constructions. We prove that this sort of discrete uniform convexity is inherited by the convex envelope, which is the key to obtain other remarkable properties such as the coercivity. Our techniques allow to retrieve Enflo's uniformly convex renorming of super-reflexive Banach spaces as the regularization of a raw function built from trees. Among other applications, we provide a sharp estimation of the distance of a given function to the set of differences of Lipschitz convex functions. Finally, we prove the equivalence of several natural fashions to quantify the non-super weakly compactness of a subset of a Banach space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.