Papers
Topics
Authors
Recent
2000 character limit reached

The geometry of antisymplectic involutions, I (2102.02161v2)

Published 3 Feb 2021 in math.AG

Abstract: We study fixed loci of antisymplectic involutions on projective hyperk\"ahler manifolds of $\mathrm{K3}{[n]}$-type. When the involution is induced by an ample class of square 2 in the Beauville-Bogomolov-Fujiki lattice, we show that the number of connected components of the fixed locus is equal to the divisibility of the class, which is either 1 or 2.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.