Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Session-based Recommendation with Self-Attention Networks (2102.01922v1)

Published 3 Feb 2021 in cs.IR

Abstract: Session-based recommendation aims to predict user's next behavior from current session and previous anonymous sessions. Capturing long-range dependencies between items is a vital challenge in session-based recommendation. A novel approach is proposed for session-based recommendation with self-attention networks (SR-SAN) as a remedy. The self-attention networks (SAN) allow SR-SAN capture the global dependencies among all items of a session regardless of their distance. In SR-SAN, a single item latent vector is used to capture both current interest and global interest instead of session embedding which is composed of current interest embedding and global interest embedding. Some experiments have been performed on some open benchmark datasets. Experimental results show that the proposed method outperforms some state-of-the-arts by comparisons.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jun Fang (125 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.