Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic traffic assignment in a corridor network: Optimum versus Equilibrium

Published 3 Feb 2021 in math.OC and cs.GT | (2102.01899v2)

Abstract: This study investigates dynamic system-optimal (DSO) and dynamic user equilibrium (DUE) traffic assignment of departure/arrival-time choices in a corridor network. The morning commute problems with a many-to-one pattern of origin-destination demand and the evening commute problems with a one-to-many pattern are considered. Specifically, a novel approach to derive closed-form solutions for both DSO and DUE problems is developed. We first derive a closed-form solution to the DSO problem based on the regularities of the cost and flow variables at an optimal state. By utilizing this solution, we prove that the queuing delay at a bottleneck in a DUE solution is equal to an optimal toll that eliminates the queue in a DSO solution under certain conditions of a schedule delay function. This enables us to derive a closed-form DUE solution by using the DSO solution. We also show the theoretical relationship between the DSO and DUE assignment. Numerical examples are provided to illustrate and verify the analytical results.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.