Papers
Topics
Authors
Recent
Search
2000 character limit reached

Near-Optimal Offline Reinforcement Learning via Double Variance Reduction

Published 2 Feb 2021 in cs.LG, cs.AI, and stat.ML | (2102.01748v1)

Abstract: We consider the problem of offline reinforcement learning (RL) -- a well-motivated setting of RL that aims at policy optimization using only historical data. Despite its wide applicability, theoretical understandings of offline RL, such as its optimal sample complexity, remain largely open even in basic settings such as \emph{tabular} Markov Decision Processes (MDPs). In this paper, we propose Off-Policy Double Variance Reduction (OPDVR), a new variance reduction based algorithm for offline RL. Our main result shows that OPDVR provably identifies an $\epsilon$-optimal policy with $\widetilde{O}(H2/d_m\epsilon2)$ episodes of offline data in the finite-horizon stationary transition setting, where $H$ is the horizon length and $d_m$ is the minimal marginal state-action distribution induced by the behavior policy. This improves over the best known upper bound by a factor of $H$. Moreover, we establish an information-theoretic lower bound of $\Omega(H2/d_m\epsilon2)$ which certifies that OPDVR is optimal up to logarithmic factors. Lastly, we show that OPDVR also achieves rate-optimal sample complexity under alternative settings such as the finite-horizon MDPs with non-stationary transitions and the infinite horizon MDPs with discounted rewards.

Citations (62)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.