Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mapping stellar surfaces II: An interpretable Gaussian process model for light curves (2102.01697v2)

Published 2 Feb 2021 in astro-ph.SR, astro-ph.EP, and astro-ph.IM

Abstract: The use of Gaussian processes (GPs) as models for astronomical time series datasets has recently become almost ubiquitous, given their ease of use and flexibility. GPs excel in particular at marginalization over the stellar signal in cases where the variability due to starspots rotating in and out of view is treated as a nuisance, such as in exoplanet transit modeling. However, these effective models are less useful in cases where the starspot signal is of primary interest since it is not obvious how the parameters of the GP model are related to the physical properties of interest, such as the size, contrast, and latitudinal distribution of the spots. Instead, it is common practice to explicitly model the effect of individual starspots on the light curve and attempt to infer their properties via optimization or posterior inference. Unfortunately, this process is degenerate, ill-posed, and often computationally intractable when applied to stars with more than a few spots and/or to ensembles of many light curves. In this paper, we derive a closed-form expression for the mean and covariance of a Gaussian process model that describes the light curve of a rotating, evolving stellar surface conditioned on a given distribution of starspot sizes, contrasts, and latitudes. We demonstrate that this model is correctly calibrated, allowing one to robustly infer physical parameters of interest from one or more stellar light curves, including the typical radii and the mean and variance of the latitude distribution of starspots. Our GP has far-ranging implications for understanding the variability and magnetic activity of stars from both light curves and radial velocity (RV) measurements, as well as for robustly modeling correlated noise in both transiting and RV exoplanet searches. Our implementation is efficient, user-friendly, and open source, available as the Python package starry-process.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube