Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DC Semidefinite Programming and Cone Constrained DC Optimization: Theory and Local Search Methods (2102.01481v2)

Published 2 Feb 2021 in math.OC

Abstract: In this paper, we study possible extensions of the main ideas and methods of constrained DC optimization to the case of nonlinear semidefinite programming problems and more general nonlinear and nonsmooth cone constrained optimization problems. In the first part of the paper, we analyse two different approaches to the definition of DC matrix-valued functions (namely, order-theoretic and componentwise), study some properties of convex and DC matrix-valued mappings and demonstrate how to compute DC decompositions of some nonlinear semidefinite constraints appearing in applications. We also compute a DC decomposition of the maximal eigenvalue of a DC matrix-valued function. This DC decomposition can be used to reformulate DC semidefinite constraints as DC inequality constrains. Finally, we study local optimality conditions for general cone constrained DC optimization problems. The second part of the paper is devoted to a detailed convergence analysis of two extensions of the well-known DCA method for solving DC (Difference of Convex functions) optimization problems to the case of general cone constrained DC optimization problems. We study the global convergence of the DCA for cone constrained problems and present a comprehensive analysis of a version of the DCA utilizing exact penalty functions. In particular, we study the exactness property of the penalized convex subproblems and provide two types of sufficient conditions for the convergence of the exact penalty method to a feasible and critical point of a cone constrained DC optimization problem from an infeasible starting point. In the numerical section of this work, the exact penalty DCA is applied to the problem of computing compressed modes for variational problems and the sphere packing problem on Grassmannian.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.