Papers
Topics
Authors
Recent
Search
2000 character limit reached

Functional principal component analysis estimator for non-Gaussian data

Published 2 Feb 2021 in stat.ME | (2102.01286v2)

Abstract: Functional principal component analysis (FPCA) could become invalid when data involve non-Gaussian features. Therefore, we aim to develop a general FPCA method to adapt to such non-Gaussian cases. A Kenall's $\tau$ function, which possesses identical eigenfunctions as covariance function, is constructed. The particular formulation of Kendall's $\tau$ function makes it less insensitive to data distribution. We further apply it to the estimation of FPCA and study the corresponding asymptotic consistency. Moreover, the effectiveness of the proposed method is demonstrated through a comprehensive simulation study and an application to the physical activity data collected by a wearable accelerometer monitor.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.