Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
81 tokens/sec
Gemini 2.5 Pro Premium
47 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
88 tokens/sec
DeepSeek R1 via Azure Premium
79 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
192 tokens/sec
2000 character limit reached

High-Confidence Data-Driven Ambiguity Sets for Time-Varying Linear Systems (2102.01142v2)

Published 1 Feb 2021 in math.OC

Abstract: This paper builds Wasserstein ambiguity sets for the unknown probability distribution of dynamic random variables leveraging noisy partial-state observations. The constructed ambiguity sets contain the true distribution of the data with quantifiable probability and can be exploited to formulate robust stochastic optimization problems with out-of-sample guarantees. We assume the random variable evolves in discrete time under uncertain initial conditions and dynamics, and that noisy partial measurements are available. All random elements have unknown probability distributions and we make inferences about the distribution of the state vector using several output samples from multiple realizations of the process. To this end, we leverage an observer to estimate the state of each independent realization and exploit the outcome to construct the ambiguity sets. We illustrate our results in an economic dispatch problem involving distributed energy resources over which the scheduler has no direct control.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.