Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

LSTM-SAKT: LSTM-Encoded SAKT-like Transformer for Knowledge Tracing (2102.00845v2)

Published 28 Jan 2021 in cs.CL

Abstract: This paper introduces the 2nd place solution for the Riiid! Answer Correctness Prediction in Kaggle, the world's largest data science competition website. This competition was held from October 16, 2020, to January 7, 2021, with 3395 teams and 4387 competitors. The main insights and contributions of this paper are as follows. (i) We pointed out existing Transformer-based models are suffering from a problem that the information which their query/key/value can contain is limited. To solve this problem, we proposed a method that uses LSTM to obtain query/key/value and verified its effectiveness. (ii) We pointed out 'inter-container' leakage problem, which happens in datasets where questions are sometimes served together. To solve this problem, we showed special indexing/masking techniques that are useful when using RNN-variants and Transformer. (iii) We found additional hand-crafted features are effective to overcome the limits of Transformer, which can never consider the samples older than the sequence length.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.