Papers
Topics
Authors
Recent
2000 character limit reached

New Formulation for Coloring Circle Graphs and its Application to Capacitated Stowage Stack Minimization (2102.00691v1)

Published 1 Feb 2021 in cs.DM

Abstract: A circle graph is a graph in which the adjacency of vertices can be represented as the intersection of chords of a circle. The problem of calculating the chromatic number is known to be NP-complete, even on circle graphs. In this paper, we propose a new integer linear programming formulation for a coloring problem on circle graphs. We also show that the linear relaxation problem of our formulation finds the fractional chromatic number of a given circle graph. As a byproduct, our formulation gives a polynomial-sized linear programming formulation for calculating the fractional chromatic number of a circle graph. We also extend our result to a formulation for a capacitated stowage stack minimization problem.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.