Papers
Topics
Authors
Recent
2000 character limit reached

Classification Of Automotive Targets Using Inverse Synthetic Aperture Radar Images (2101.12535v2)

Published 29 Jan 2021 in eess.SP

Abstract: We present a framework for simulating realistic inverse synthetic aperture radar images of automotive targets at millimeter wave frequencies. The model incorporates radar scattering phenomenology of commonly found vehicles along with range-Doppler based clutter and receiver noise. These images provide insights into the physical dimensions of the target, the number of wheels and the trajectory undertaken by the target. The model is experimentally validated with measurement data gathered from an automotive radar. The images from the simulation database are subsequently classified using both traditional machine learning techniques as well as deep neural networks based on transfer learning. We show that the ISAR images offer a classification accuracy above 90% and are robust to both noise and clutter.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.