Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Parallelizing the Unpacking and Clustering of Detector Data for Reconstruction of Charged Particle Tracks on Multi-core CPUs and Many-core GPUs (2101.11489v1)

Published 27 Jan 2021 in hep-ex and cs.DC

Abstract: We present results from parallelizing the unpacking and clustering steps of the raw data from the silicon strip modules for reconstruction of charged particle tracks. Throughput is further improved by concurrently processing multiple events using nested OpenMP parallelism on CPU or CUDA streams on GPU. The new implementation along with earlier work in developing a parallelized and vectorized implementation of the combinatoric Kalman filter algorithm has enabled efficient global reconstruction of the entire event on modern computer architectures. We demonstrate the performance of the new implementation on Intel Xeon and NVIDIA GPU architectures.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.