Parallelizing the Unpacking and Clustering of Detector Data for Reconstruction of Charged Particle Tracks on Multi-core CPUs and Many-core GPUs (2101.11489v1)
Abstract: We present results from parallelizing the unpacking and clustering steps of the raw data from the silicon strip modules for reconstruction of charged particle tracks. Throughput is further improved by concurrently processing multiple events using nested OpenMP parallelism on CPU or CUDA streams on GPU. The new implementation along with earlier work in developing a parallelized and vectorized implementation of the combinatoric Kalman filter algorithm has enabled efficient global reconstruction of the entire event on modern computer architectures. We demonstrate the performance of the new implementation on Intel Xeon and NVIDIA GPU architectures.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.