Classical and variational Poisson cohomology
Abstract: We prove that, for a Poisson vertex algebra V, the canonical injective homomorphism of the variational cohomology of V to its classical cohomology is an isomorphism, provided that V, viewed as a differential algebra, is an algebra of differential polynomials in finitely many differential variables. This theorem is one of the key ingredients in the computation of vertex algebra cohomology. For its proof, we introduce the sesquilinear Hochschild and Harrison cohomology complexes and prove a vanishing theorem for the symmetric sesquilinear Harrison cohomology of the algebra of differential polynomials in finitely many differential variables.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.