Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Robust Output Regulation and Reinforcement Learning-based Output Tracking Design for Unknown Linear Discrete-Time Systems (2101.08706v1)

Published 21 Jan 2021 in math.DS

Abstract: In this paper, we investigate the optimal output tracking problem for linear discrete-time systems with unknown dynamics using reinforcement learning and robust output regulation theory. This output tracking problem only allows to utilize the outputs of the reference system and the controlled system, rather than their states, and differs from most existing tracking results that depend on the state of the system. The optimal tracking problem is formulated into a linear quadratic regulation problem by proposing a family of dynamic discrete-time controllers. Then, it is shown that solving the output tracking problem is equivalent to solving output regulation equations, whose solution, however, requires the knowledge of the complete and accurate system dynamics. To remove such a requirement, an off-policy reinforcement learning algorithm is proposed using only the measured output data along the trajectories of the system and the reference output. By introducing re-expression error and analyzing the rank condition of the parameterization matrix, we ensure the uniqueness of the proposed RL based optimal control via output feedback.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube