Papers
Topics
Authors
Recent
2000 character limit reached

Boosting in Univariate Nonparametric Maximum Likelihood Estimation

Published 21 Jan 2021 in stat.ML, cs.LG, eess.SP, and stat.ME | (2101.08505v1)

Abstract: Nonparametric maximum likelihood estimation is intended to infer the unknown density distribution while making as few assumptions as possible. To alleviate the over parameterization in nonparametric data fitting, smoothing assumptions are usually merged into the estimation. In this paper a novel boosting-based method is introduced to the nonparametric estimation in univariate cases. We deduce the boosting algorithm by the second-order approximation of nonparametric log-likelihood. Gaussian kernel and smooth spline are chosen as weak learners in boosting to satisfy the smoothing assumptions. Simulations and real data experiments demonstrate the efficacy of the proposed approach.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.