Sparse expanders have negative curvature (2101.08242v2)
Abstract: We prove that bounded-degree expanders with non-negative Ollivier-Ricci curvature do not exist, thereby solving a long-standing open problem suggested by Naor and Milman and publicized by Ollivier (2010). In fact, this remains true even if we allow for a vanishing proportion of large degrees, large eigenvalues, and negatively-curved edges. To establish this, we work directly at the level of Benjamini-Schramm limits, and exploit the entropic characterization of the Liouville property on stationary random graphs to show that non-negative curvature and spectral expansion are incompatible "at infinity". We then transfer this result to finite graphs via local weak convergence. The same approach also applies to the Bacry-Emery curvature condition CD$(0,\infty)$, thereby settling a recent conjecture of Cushing, Liu and Peyerimhoff (2019).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.