Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bias in ontologies -- a preliminary assessment (2101.08035v1)

Published 20 Jan 2021 in cs.AI

Abstract: Logical theories in the form of ontologies and similar artefacts in computing and IT are used for structuring, annotating, and querying data, among others, and therewith influence data analytics regarding what is fed into the algorithms. Algorithmic bias is a well-known notion, but what does bias mean in the context of ontologies that provide a structuring mechanism for an algorithm's input? What are the sources of bias there and how would they manifest themselves in ontologies? We examine and enumerate types of bias relevant for ontologies, and whether they are explicit or implicit. These eight types are illustrated with examples from extant production-level ontologies and samples from the literature. We then assessed three concurrently developed COVID-19 ontologies on bias and detected different subsets of types of bias in each one, to a greater or lesser extent. This first characterisation aims contribute to a sensitisation of ethical aspects of ontologies primarily regarding representation of information and knowledge.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.