Papers
Topics
Authors
Recent
2000 character limit reached

Big mapping class groups and the co-Hopfian property

Published 18 Jan 2021 in math.GT | (2101.07188v3)

Abstract: We study injective homomorphisms between big mapping class groups of infinite-type surfaces. First, we construct (uncountably many) examples of surfaces without boundary whose (pure) mapping class groups are not co-Hopfian; these are the first examples of injective endomorphisms of mapping class groups (of surfaces with empty boundary) that fail to be surjective. We then prove that, subject to some topological conditions on the domain surface, any continuous injective homomorphism between (arbitrary) big mapping class groups that sends Dehn twists to Dehn twists is induced by homeomorphism. Finally, we explore the extent to which, in stark contrast to the finite-type case, superinjective maps between curve graphs impose no topological restrictions on the underlying surfaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.