Papers
Topics
Authors
Recent
2000 character limit reached

Tiny Transducer: A Highly-efficient Speech Recognition Model on Edge Devices (2101.06856v2)

Published 18 Jan 2021 in eess.AS and cs.SD

Abstract: This paper proposes an extremely lightweight phone-based transducer model with a tiny decoding graph on edge devices. First, a phone synchronous decoding (PSD) algorithm based on blank label skipping is first used to speed up the transducer decoding process. Then, to decrease the deletion errors introduced by the high blank score, a blank label deweighting approach is proposed. To reduce parameters and computation, deep feedforward sequential memory network (DFSMN) layers are used in the transducer encoder, and a CNN-based stateless predictor is adopted. SVD technology compresses the model further. WFST-based decoding graph takes the context-independent (CI) phone posteriors as input and allows us to flexibly bias user-specific information. Finally, with only 0.9M parameters after SVD, our system could give a relative 9.1% - 20.5% improvement compared with a bigger conventional hybrid system on edge devices.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.