Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning to Select for MIMO Radar based on Hybrid Analog-Digital Beamforming (2101.06837v2)

Published 18 Jan 2021 in eess.SP

Abstract: In this paper, we propose an energy-efficient radar beampattern design framework for a Millimeter Wave (mmWave) massive multi-input multi-output (mMIMO) system, equipped with a hybrid analog-digital (HAD) beamforming structure. Aiming to reduce the power consumption and hardware cost of the mMIMO system, we employ a machine learning approach to synthesize the probing beampattern based on a small number of RF chains and antennas. By leveraging a combination of softmax neural networks, the proposed solution is able to achieve a desirable beampattern with high accuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.