Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cohomologie des courbes analytiques $p$-adiques (2101.06647v2)

Published 17 Jan 2021 in math.NT and math.AG

Abstract: Cohomology of affinoids does not behave well; often, this can be remedied by making affinoids overconvergent. In this paper, we focus on dimension 1 and compute, using analogs of pants decompositions of Riemann surfaces, various cohomologies of affinoids. To give a meaning to these decompositions we modify slightly the notion of $p$-adic formal scheme, which gives rise to the adoc (an interpolation between adic and ad hoc) geometry. It turns out that cohomology of affinoids (in dimension 1) is not that pathological. From this we deduce a computation of cohomologies of curves without boundary (like the Drinfeld half-plane and its coverings). In particular, we obtain a description of their $p$-adic pro-\'etale cohomology in terms of de the Rham complex and the Hyodo-Kato cohomology, the later having properties similar to the ones of $\ell$-adic pro-\'etale cohomology, for $\ell\neq p$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube