Papers
Topics
Authors
Recent
2000 character limit reached

Superintegrability of Calogero-Moser systems associated with the cyclic quiver

Published 14 Jan 2021 in nlin.SI, math-ph, and math.MP | (2101.05520v2)

Abstract: We study complex integrable systems on quiver varieties associated with the cyclic quiver, and prove their superintegrability by explicitly constructing first integrals. We interpret them as rational Calogero-Moser systems endowed with internal degrees of freedom called spins. They encompass the usual systems in type $A_{n-1}$ and $B_n$, as well as generalisations introduced by Chalykh and Silantyev in connection with the multicomponent KP hierarchy. We also prove that superintegrability is preserved when a harmonic oscillator potential is added.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.