Papers
Topics
Authors
Recent
2000 character limit reached

Validity of Whitham's modulation equations for dissipative systems with a conservation law -- Phase dynamics in a generalized Ginzburg-Landau system -- (2101.04993v1)

Published 13 Jan 2021 in math.AP and nlin.PS

Abstract: It is well-established that Whitham's modulation equations approximate the dynamics of slowly varying periodic wave trains in dispersive systems. We are interested in its validity in dissipative systems with a conservation law. The prototype example for such a system is the generalized Ginzburg-Landau system that arises as a universal amplitude system for the description of a Turing-Hopf bifurcation in spatially extended pattern-forming systems with neutrally stable long modes. In this paper we prove rigorous error estimates between the approximation obtained through Whitham's modulation equations and true solutions to this Ginzburg-Landau system. Our proof relies on analytic smoothing, Cauchy-Kovalevskaya theory, energy estimates in Gevrey spaces, and a local decomposition in Fourier space, which separates center from stable modes and uncovers a (semi)derivative in front of the relevant nonlinear terms.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.