Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sum-of-Squares proofs of logarithmic Sobolev inequalities on finite Markov chains (2101.04988v2)

Published 13 Jan 2021 in math.OC and math.PR

Abstract: Logarithmic Sobolev inequalities are a fundamental class of inequalities that play an important role in information theory. They play a key role in establishing concentration inequalities and in obtaining quantitative estimates on the convergence to equilibrium of Markov processes. More recently, deep links have been established between logarithmic Sobolev inequalities and strong data processing inequalities. In this paper we study logarithmic Sobolev inequalities from a computational point of view. We describe a hierarchy of semidefinite programming relaxations which give certified lower bounds on the logarithmic Sobolev constant of a finite Markov operator, and we prove that the optimal values of these semidefinite programs converge to the logarithmic Sobolev constant. Numerical experiments show that these relaxations are often very close to the true constant even for low levels of the hierarchy. Finally, we exploit our relaxation to obtain a sum-of-squares proof that the logarithmic Sobolev constant is equal to half the Poincar\'e constant for the specific case of a simple random walk on the odd $n$-cycle, with $n\in{5,7,\dots,21}$. Previously this was known only for $n=5$ and even $n$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: