Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Dynamic pricing under nested logit demand (2101.04486v1)

Published 12 Jan 2021 in math.OC and econ.TH

Abstract: Recently, there is growing interest and need for dynamic pricing algorithms, especially, in the field of online marketplaces by offering smart pricing options for big online stores. We present an approach to adjust prices based on the observed online market data. The key idea is to characterize optimal prices as minimizers of a total expected revenue function, which turns out to be convex. We assume that consumers face information processing costs, hence, follow a discrete choice demand model, and suppliers are equipped with quantity adjustment costs. We prove the strong smoothness of the total expected revenue function by deriving the strong convexity modulus of its dual. Our gradient-based pricing schemes outbalance supply and demand at the convergence rates of $\mathcal{O}(\frac{1}{t})$ and $\mathcal{O}(\frac{1}{t2})$, respectively. This suggests that the imperfect behavior of consumers and suppliers helps to stabilize the market.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.