Learning with Comparison Feedback: Online Estimation of Sample Statistics (2101.04176v1)
Abstract: We study an online version of the noisy binary search problem where feedback is generated by a non-stochastic adversary rather than perturbed by random noise. We reframe this as maintaining an accurate estimate for the median of an adversarial sequence of integers, $x_1, x_2, \dots$, in a model where each number $x_t$ can only be accessed through a single threshold query of the form ${1(x_t \leq q_t)}$. In this online comparison feedback model, we explore estimation of general sample statistics, providing robust algorithms for median, CDF, and mean estimation with nearly matching lower bounds. We conclude with several high-dimensional generalizations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.