Papers
Topics
Authors
Recent
2000 character limit reached

Learning with Comparison Feedback: Online Estimation of Sample Statistics (2101.04176v1)

Published 11 Jan 2021 in cs.LG and cs.DS

Abstract: We study an online version of the noisy binary search problem where feedback is generated by a non-stochastic adversary rather than perturbed by random noise. We reframe this as maintaining an accurate estimate for the median of an adversarial sequence of integers, $x_1, x_2, \dots$, in a model where each number $x_t$ can only be accessed through a single threshold query of the form ${1(x_t \leq q_t)}$. In this online comparison feedback model, we explore estimation of general sample statistics, providing robust algorithms for median, CDF, and mean estimation with nearly matching lower bounds. We conclude with several high-dimensional generalizations.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.