Papers
Topics
Authors
Recent
Search
2000 character limit reached

Visibility of Kobayashi geodesics in convex domains and related properties

Published 11 Jan 2021 in math.CV | (2101.04159v4)

Abstract: Let $D\subset \mathbb Cn$ be a bounded domain. A pair of distinct boundary points ${p,q}$ of $D$ has the visibility property provided there exist a compact subset $K_{p,q}\subset D$ and open neighborhoods $U_p$ of $p$ and $U_q$ of $q$, such that the real geodesics for the Kobayashi metric of $D$ which join points in $U_p$ and $U_q$ intersect $K_{p,q}$. Every Gromov hyperbolic convex domain enjoys the visibility property for any couple of boundary points. The Goldilocks domains introduced by Bharali and Zimmer and the log-type domains of Liu and Wang also enjoy the visibility property. In this paper we relate the growth of the Kobayashi distance near the boundary with visibility and provide new families of convex domains where that property holds. We use the same methods to provide refinements of localization results for the Kobayashi distance, and give a localized sufficient condition for visibility. We also exploit visibility to study the boundary behavior of biholomorphic maps.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.