Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 415 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Some characterization results on classical and free Poisson thinning (2101.04105v4)

Published 11 Jan 2021 in math.PR, math.OA, math.ST, and stat.TH

Abstract: Poisson thinning is an elementary result in probability, which is of great importance in the theory of Poisson point processes. In this article, we record a couple of characterization results on Poisson thinning. We also consider several free probability analogues of Poisson thinning, which we collectively dub as \emph{free Poisson thinning}, and prove characterization results for them, similar to the classical case. One of these free Poisson thinning procedures arises naturally as a high-dimensional asymptotic analogue of Cochran's theorem from multivariate statistics on the "Wishart-ness" of quadratic functions of Gaussian random matrices. We note the implications of our characterization results in the context of Cochran's theorem. We also prove a free probability analogue of Craig's theorem, another well-known result in multivariate statistics on the independence of quadratic functions of Gaussian random matrices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.