Convex bodies and asymptotic invariants for powers of monomial ideals
Abstract: Continuing a well established tradition of associating convex bodies to monomial ideals, we initiate a program to construct asymptotic Newton polyhedra from decompositions of monomial ideals. This is achieved by forming a graded family of ideals based on a given decomposition. We term these graded families powers since they generalize the notions of ordinary and symbolic powers. Asymptotic invariants for these graded families are expressed as solutions to linear optimization problems on the respective convex bodies. This allows to establish a lower bound on the Waldschmidt constant of a monomial ideal by means of a more easily computable invariant, which we introduce under the name of naive Waldschmidt constant.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.