Papers
Topics
Authors
Recent
2000 character limit reached

Convex bodies and asymptotic invariants for powers of monomial ideals

Published 11 Jan 2021 in math.AC and math.CO | (2101.04008v2)

Abstract: Continuing a well established tradition of associating convex bodies to monomial ideals, we initiate a program to construct asymptotic Newton polyhedra from decompositions of monomial ideals. This is achieved by forming a graded family of ideals based on a given decomposition. We term these graded families powers since they generalize the notions of ordinary and symbolic powers. Asymptotic invariants for these graded families are expressed as solutions to linear optimization problems on the respective convex bodies. This allows to establish a lower bound on the Waldschmidt constant of a monomial ideal by means of a more easily computable invariant, which we introduce under the name of naive Waldschmidt constant.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.