Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Comprehensive Study on Optimization Strategies for Gradient Descent In Deep Learning (2101.02397v1)

Published 7 Jan 2021 in cs.LG and cs.AI

Abstract: One of the most important parts of Artificial Neural Networks is minimizing the loss functions which tells us how good or bad our model is. To minimize these losses we need to tune the weights and biases. Also to calculate the minimum value of a function we need gradient. And to update our weights we need gradient descent. But there are some problems with regular gradient descent ie. it is quite slow and not that accurate. This article aims to give an introduction to optimization strategies to gradient descent. In addition, we shall also discuss the architecture of these algorithms and further optimization of Neural Networks in general

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube