Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On partial differential operators which annihilate the roots of the universal equation of degree k (2101.01895v1)

Published 6 Jan 2021 in math.AG and math.CV

Abstract: The aim of this paper is to study in details the regular holonomic $D-$module introduced in \cite{[B.19]} whose local solutions outside the polar hyper-surface ${\Delta(\sigma).\sigma_k = 0 }$ are given by the local system generated by the local branches of the multivalued function which is the root of the universal degree $k$ equation $zk + \sum_{h=1}k (-1)h.\sigma_h.z{k-h} = 0 $. Note that it is surprising that this regular holonomic $D-$module is given by the quotient of $D$ by a left ideal which has very simple explicit generators despite the fact it necessary encodes the analogous systems for any root of the universal degree $l$ equation for each $l \leq k$. Our main result is to relate this $D-$module with the minimal extension of the irreducible local system associated to the difference of two branches of the multivalued function defined above. Then we obtain again a very simple explicit description of this minimal extension in term of the generators of its left ideal in the Weyl algebra. As an application we show how these results allow to compute the Taylor expansion of the root near $-1$ of the equation $zk + \sum_{h=-1}k (-1)h.\sigma_h.z{k-h} - (-1)k = 0 $.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube