Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On the power values of the sum of three squares in arithmetic progression (2101.01136v2)

Published 4 Jan 2021 in math.NT

Abstract: In this paper, using a deep result on the existence of primitive divisors of Lehmer numbers due to Y. Bilu, G. Hanrot and P. M. Voutier, we first give an explicit formula for all positive integer solutions of the Diophantine equation $(x-d)2+x2+(x+d)2=yn$ () when $n$ is an odd prime and $d=pr$, $p>3$ a prime. So this improves the results on the papers of A. Koutsianas and V. Patel \cite{KP} and A. Koutsianas \cite{Kou}. Secondly, under the assumption of our first result, we prove that () has at most one solution $(x,y)$. Next, for a general $d$, we prove the following two results: (i) if every odd prime divisor $q$ of $d$ satisfies $q\not\equiv \pm 1 \pmod{2n},$ then () has only the solution $(x,y,d,n)=(21,11,2,3)$. (ii) if $n>228000$ and $d>8\sqrt{2}$, then all solutions $(x,y)$ of () satisfy $yn<2{3/2}d3$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube