Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Koopman Mode Decomposition and Tensor Component Analysis (2101.00555v3)

Published 3 Jan 2021 in math.NA and cs.NA

Abstract: Koopman mode decomposition and tensor component analysis (also known as CANDECOMP/PARAFAC or canonical polyadic decomposition) are two popular approaches of decomposing high dimensional data sets into low dimensional modes that capture the most relevant features and/or dynamics. Despite their similar goal, the two methods are largely used by different scientific communities and formulated in distinct mathematical languages. We examine the two together and show that, under a certain (reasonable) condition on the data, the theoretical decomposition given by tensor component analysis is the \textit{same} as that given by Koopman mode decomposition. This provides a "bridge" with which the two communities should be able to more effectively communicate. When this condition is not met, Koopman mode decomposition still provides a tensor decomposition with an \textit{a priori} computable error, providing an alternative to the non-convex optimization that tensor component analysis requires. Our work provides new possibilities for algorithmic approaches to Koopman mode decomposition and tensor component analysis, provides a new perspective on the success of tensor component analysis, and builds upon a growing body of work showing that dynamical systems, and Koopman operator theory in particular, can be useful for problems that have historically made use of optimization theory.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.