On Koopman Mode Decomposition and Tensor Component Analysis (2101.00555v3)
Abstract: Koopman mode decomposition and tensor component analysis (also known as CANDECOMP/PARAFAC or canonical polyadic decomposition) are two popular approaches of decomposing high dimensional data sets into low dimensional modes that capture the most relevant features and/or dynamics. Despite their similar goal, the two methods are largely used by different scientific communities and formulated in distinct mathematical languages. We examine the two together and show that, under a certain (reasonable) condition on the data, the theoretical decomposition given by tensor component analysis is the \textit{same} as that given by Koopman mode decomposition. This provides a "bridge" with which the two communities should be able to more effectively communicate. When this condition is not met, Koopman mode decomposition still provides a tensor decomposition with an \textit{a priori} computable error, providing an alternative to the non-convex optimization that tensor component analysis requires. Our work provides new possibilities for algorithmic approaches to Koopman mode decomposition and tensor component analysis, provides a new perspective on the success of tensor component analysis, and builds upon a growing body of work showing that dynamical systems, and Koopman operator theory in particular, can be useful for problems that have historically made use of optimization theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.