Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attentive Tree-structured Network for Monotonicity Reasoning (2101.00540v1)

Published 3 Jan 2021 in cs.CL and cs.AI

Abstract: Many state-of-art neural models designed for monotonicity reasoning perform poorly on downward inference. To address this shortcoming, we developed an attentive tree-structured neural network. It consists of a tree-based long-short-term-memory network (Tree-LSTM) with soft attention. It is designed to model the syntactic parse tree information from the sentence pair of a reasoning task. A self-attentive aggregator is used for aligning the representations of the premise and the hypothesis. We present our model and evaluate it using the Monotonicity Entailment Dataset (MED). We show and attempt to explain that our model outperforms existing models on MED.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Zeming Chen (19 papers)
Citations (1)