Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

The R-matrix bootstrap for the 2d O(N) bosonic model with a boundary (2012.15576v2)

Published 31 Dec 2020 in hep-th

Abstract: The S-matrix bootstrap is extended to a 1+1d theory with $O(N)$ symmetry and a boundary in what we call the R-matrix bootstrap since the quantity of interest is the reflection matrix (R-matrix). Given a bulk S-matrix, the space of allowed R-matrices is an infinite dimensional convex space from which we plot a two dimensional section given by a convex domain on a 2d plane. In certain cases, at the boundary of the domain, we find vertices corresponding to integrable R-matrices with no free parameters. In other cases, when there is a one-parameter family of integrable R-matrices, the whole boundary represents integrable theories. We also consider R-matrices which are analytic in an extended region beyond the physical cuts, thus forbidding poles (resonances) in that region. In certain models, this drastically reduces the allowed space of R-matrices leading to new vertices that again correspond to integrable theories. We also work out the dual problem, in particular in the case of extended analyticity, the dual function has cuts on the physical line whenever unitarity is saturated. For the periodic Yang-Baxter solution that has zero transmission, we computed the R-matrix initially using the bootstrap and then derived its previously unknown analytic form.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.