Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

A note on the S-matrix bootstrap for the 2d O(N) bosonic model (1805.02812v2)

Published 8 May 2018 in hep-th

Abstract: In this work we apply the S-matrix bootstrap maximization program to the 2d bosonic O(N) integrable model which has N species of scalar particles of mass m and no bound states. Since in previous studies theories were defined by maximizing the coupling between particles and their bound states, the main problem appears to be to find what other functional can be used to define this model. Instead, we argue that the defining property of this integrable model is that it resides at a vertex of the convex space determined by the unitarity and crossing constraints. Thus, the integrable model can be found by maximizing any linear functional whose gradient points in the general direction of the vertex, namely within a cone determined by the normals to the faces intersecting at the vertex. This is a standard problem in applied mathematics, related to semi-definite programming and solvable by fast available numerical algorithms. The information provided by the numerical solution is enough to reproduce the known analytical solution without using integrability, namely the Yang-Baxter equation. This situation seems quite generic so we expect that other theories without continuous parameters can also be found by maximizing linear functionals in the convex space of allowed S-matrices.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.