Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TensorX: Extensible API for Neural Network Model Design and Deployment (2012.14539v2)

Published 29 Dec 2020 in cs.LG

Abstract: TensorX is a Python library for prototyping, design, and deployment of complex neural network models in TensorFlow. A special emphasis is put on ease of use, performance, and API consistency. It aims to make available high-level components like neural network layers that are, in effect, stateful functions, easy to compose and reuse. Its architecture allows for the expression of patterns commonly found when building neural network models either on research or industrial settings. Incorporating ideas from several other deep learning libraries, it makes it easy to use components commonly found in state-of-the-art models. The library design mixes functional dataflow computation graphs with object-oriented neural network building blocks. TensorX combines the dynamic nature of Python with the high-performance GPU-enabled operations of TensorFlow. This library has minimal core dependencies (TensorFlow and NumPy) and is distributed under Apache License 2.0 licence, encouraging its use in both an academic and commercial settings. Full documentation, source code, and binaries can be found in https://tensorx.org/.

Summary

We haven't generated a summary for this paper yet.