On a Theorem by A.S. Cherny for Semilinear Stochastic Partial Differential Equations
Abstract: We consider analytically weak solutions to semilinear stochastic partial differential equations with non-anticipating coefficients driven by cylindrical Brownian motion. The solutions are allowed to take values in general separable Banach spaces. We show that weak uniqueness is equivalent to weak joint uniqueness, and thereby generalize a theorem by A.S. Cherny to an infinite dimensional setting. Our proof for the technical key step is different from Cherny's and uses cylindrical martingale problems. As an application, we deduce a dual version of the Yamada-Watanabe theorem, i.e. we show that strong existence and weak uniqueness imply weak existence and strong uniqueness.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.