Papers
Topics
Authors
Recent
2000 character limit reached

Exploring tropical differential equations (2012.14067v4)

Published 28 Dec 2020 in math.AG and cs.SC

Abstract: The purpose of this paper is fourfold. The first is to develop the theory of tropical differential algebraic geometry from scratch; the second is to present the tropical fundamental theorem for differential algebraic geometry, and show how it may be used to extract combinatorial information about the set of power series solutions to a given system of differential equations, both in the archimedean (complex analytic) and in the non-archimedean (e.g., $p$-adic) settings. A third and subsidiary aim is to show how tropical differential algebraic geometry is a natural application of semiring theory, and in so doing, contribute to the valuative study of differential algebraic geometry. We use this formalism to extend the fundamental theorem of partial differential algebraic geometry to the differential fraction field of the ring of formal power series in arbitrarily (finitely) many variables; in doing so we produce new examples of non-Krull valuations that merit further study in their own right.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.