Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Histogram Matching Augmentation for Domain Adaptation with Application to Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Image Segmentation (2012.13871v1)

Published 27 Dec 2020 in eess.IV and cs.CV

Abstract: Convolutional Neural Networks (CNNs) have achieved high accuracy for cardiac structure segmentation if training cases and testing cases are from the same distribution. However, the performance would be degraded if the testing cases are from a distinct domain (e.g., new MRI scanners, clinical centers). In this paper, we propose a histogram matching (HM) data augmentation method to eliminate the domain gap. Specifically, our method generates new training cases by using HM to transfer the intensity distribution of testing cases to existing training cases. The proposed method is quite simple and can be used in a plug-and-play way in many segmentation tasks. The method is evaluated on MICCAI 2020 M&Ms challenge, and achieves average Dice scores of 0.9051, 0.8405, and 0.8749, and Hausdorff Distances of 9.996, 12.49, and 12.68 for the left ventricular, myocardium, and right ventricular, respectively. Our results rank the third place in MICCAI 2020 M&Ms challenge. The code and trained models are publicly available at \url{https://github.com/JunMa11/HM_DataAug}.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.