Power Iteration for Tensor PCA (2012.13669v1)
Abstract: In this paper, we study the power iteration algorithm for the spiked tensor model, as introduced in [44]. We give necessary and sufficient conditions for the convergence of the power iteration algorithm. When the power iteration algorithm converges, for the rank one spiked tensor model, we show the estimators for the spike strength and linear functionals of the signal are asymptotically Gaussian; for the multi-rank spiked tensor model, we show the estimators are asymptotically mixtures of Gaussian. This new phenomenon is different from the spiked matrix model. Using these asymptotic results of our estimators, we construct valid and efficient confidence intervals for spike strengths and linear functionals of the signals.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.