Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Theory of Updating Ambiguous Information (2012.13650v1)

Published 26 Dec 2020 in econ.TH

Abstract: We introduce a new updating rule, the conditional maximum likelihood rule (CML) for updating ambiguous information. The CML formula replaces the likelihood term in Bayes' rule with the maximal likelihood of the given signal conditional on the state. We show that CML satisfies a new axiom, increased sensitivity after updating, while other updating rules do not. With CML, a decision maker's posterior is unaffected by the order in which independent signals arrive. CML also accommodates recent experimental findings on updating signals of unknown accuracy and has simple predictions on learning with such signals. We show that an information designer can almost achieve her maximal payoff with a suitable ambiguous information structure whenever the agent updates according to CML.

Summary

We haven't generated a summary for this paper yet.