Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neural Network Training With Homomorphic Encryption (2012.13552v1)

Published 25 Dec 2020 in cs.CR

Abstract: We introduce a novel method and implementation architecture to train neural networks which preserves the confidentiality of both the model and the data. Our method relies on homomorphic capability of lattice based encryption scheme. Our procedure is optimized for operations on packed ciphertexts in order to achieve efficient updates of the model parameters. Our method achieves a significant reduction of computations due to our way to perform multiplications and rotations on packed ciphertexts from a feedforward network to a back-propagation network. To verify the accuracy of the training model as well as the implementation feasibility, we tested our method on the Iris data set by using the CKKS scheme with Microsoft SEAL as a back end. Although our test implementation is for simple neural network training, we believe our basic implementation block can help the further applications for more complex neural network based use cases.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.