Papers
Topics
Authors
Recent
2000 character limit reached

Existence of constant mean curvature 2-spheres in Riemannian 3-spheres (2012.13379v3)

Published 24 Dec 2020 in math.DG and math.AP

Abstract: We prove the existence of branched immersed constant mean curvature 2-spheres in an arbitrary Riemannian 3-sphere for almost every prescribed mean curvature, and moreover for all prescribed mean curvatures when the 3-sphere is positively curved. To achieve this, we develop a min-max scheme for a weighted Dirichlet energy functional. There are three main ingredients in our approach: a bi-harmonic approximation procedure to obtain compactness of the new functional, a derivative estimate of the min-max values to gain energy upper bounds for min-max sequences for almost every choice of mean curvature, and a Morse index estimate to obtain another uniform energy bound required to reach the remaining constant mean curvatures in the presence of positive curvature.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.