Papers
Topics
Authors
Recent
2000 character limit reached

Stability Analysis of Discrete-Time Linear Complementarity Systems

Published 24 Dec 2020 in math.OC | (2012.13287v2)

Abstract: A Discrete-Time Linear Complementarity System (DLCS) is a dynamical system in discrete time whose state evolution is governed by linear dynamics in states and algebraic variables that solve a Linear Complementarity Problem (LCP). The DLCS is the hybrid dynamical system that is the discrete-time counterpart of the well-known Linear Complementarity System (LCS). We derive sufficient conditions for Lyapunov stability of a DLCS when using a quadratic Lyapunov function that depends only on the state variables and a quadratic Lyapunov function that depends both on the state and the algebraic variables. The sufficient conditions require checking the feasibility of a copositive program over nonconvex cones. Our results only assume that the LCP is solvable and do not require the solutions to be unique. We devise a novel, exact cutting plane algorithm for the verification of stability and the computation of the Lyapunov functions. To the best of our knowledge, our algorithm is the first exact approach for stability verification of DLCS. A number of numerical examples are presented to illustrate the approach. Though our main object of study in this paper is the DLCS, the proposed algorithm can be readily applied to the stability verification of LCS. In this context, we show the equivalence between the stability of a LCS and the DLCS, resulting from a time-stepping procedure applied to the LCS for all sufficiently small time steps.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.